В чем заключается принцип неймана устройства компьютера. Появление эвм, принципы фон неймана. Джон фон Нейман достижения в информатике

Также известная как модель фон Неймана, или Принстонская архитектура, основана на методике, описанной в 1945 году математиком и физиком Джоном фон Нейманом в рамках доклада «Первый проект» о вычислительной машине EDVAC.

Схема архитектуры

В докладе фон Неймана описывалась схема архитектуры для электронной цифровой вычислительной машины с частями, состоящими из блоков обработки, которая содержит:

  • арифметико-логическое устройство;
  • процессор регистров;
  • блок управления, содержащий регистр команд и счетчик команд;
  • запоминающее устройство для хранения данных;
  • внешнее запоминающее устройство;
  • входные и выходные механизмы.

Смысл разработки состоял в том, чтобы любая хранимая на компьютере информация могла использоваться программой, в которой выбранные данные операции не могут воспроизводиться одновременно, потому что они разделяют общую шину. Это упоминается в «Первом проекте», который описывает мысли ученого о том, какой должна быть архитектура. Фон Нейман называл такую ситуацию «узким местом», которое часто ограничивает производительность системы.

Цифровой компьютер - это ЭВМ, хранящая программу, которая содержит программные инструкции, данные для чтения, записи, а также включает в себя память с произвольным доступом (RAM). Принципы архитектуры Джона фон Неймана изложены также в его труде «Первый проект». Согласно ему, компьютеры с хранимой в памяти программой были усовершенствованием по сравнению с управлением компьютеров, таких как ENIAC. Последний был запрограммирован с помощью установки переключателей и вставки патча, приводящего к маршрутизации данных и сигналам управления между различными функциональными блоками. В подавляющем большинстве современных компьютеров память также используется подобным образом. При этом фон Неймана отличается, например, от Гарвардской, тем, что она использует не основную, а кэш-память.

Предыстория

Первые имели заданные фиксированные программы. Некоторые очень простые компьютеры до сих пор используют эту конструкцию либо для простоты, либо в учебных целях. Например, настольный калькулятор также является ЭВМ с фиксированной программой. Он может работать с основами математики, но он не может быть использован как или игровая консоль. Изменение фиксированной программы машины требует перемонтажа, реструктуризации или реорганизации аппарата. Самые ранние компьютеры не были настолько узконаправленными, так как они были разработаны впервые и в научных целях. Перепрограммирование появилось гораздо позже, и это был трудоемкий процесс, начиная с блок-схем и бумажных купюр и заканчивая подробными техническими проектами. Особенно трудным был процесс физической модернизации каналов восстановления машины. Может занять три недели установка программы на ENIAC и попытки заставить ее работать.

Новая идея

С предложением компьютера, хранящего программы в памяти, все изменилось. Хранимые в памяти, они являются конструкцией с набором инструкций. А значит, машина может сразу получить набор команд, чтобы произвести вычисления.

Конструкция таких программ относится к самомодифицирующимся кодам. Одной из первых установок для такого объекта была необходимость в алгоритме для увеличения или иным образом изменения адресной части команд. Он делался вручную в ранних конструкциях. Это стало менее важным, когда индексные регистры и косвенная адресация стали обычными характеристиками, которыми обладает архитектура ЭВМ Джона фон Неймана машины. Другое использование - вставлять часто используемые данные в потоке команды с помощью немедленного решения. Но самомодифицирующийся код в значительной степени подвергся критике, поскольку его, как правило, трудно понять и отладить. Кроме того, он оказался также неэффективным в плане воспроизведения и кэширования схем современных процессоров.

По большому счету, способность относиться к инструкции как к данным - это то, что делает ассемблеры, компиляторы, сборщики, погрузчики и другие инструменты с возможными объектами автоматизированного программирования. Так сказать, писать программы, которые пишут программы. В меньшем масштабе повторяющиеся интенсивные операции ввода и вывода, такие как BitBlt-манипуляции с изображением примитивных или пиксельных и вершинных шейдеров в современной 3D-графике, были признаны неэффективными для работы без пользовательского оборудования.

Разработка концепции хранимой в памяти программы

Математик который испытывал интерес к проблеме математической логики после лекции Макса Ньюмана в Кембриджском университете, написал статью в 1936 году, она была опубликована в издании Лондонского математического общества. В ней он описал гипотетическую машину, которую назвал «универсальной вычислительной машиной», и которая теперь известна как универсальная машина Тьюринга. Она имела бесконечное хранилище (в современной терминологии - память), которое содержало как инструкции, так и данные, для чего и создавалась данная архитектура. Фон Нейман познакомился с Тьюрингом в то время, когда он был приглашенным профессором в Кембридже в 1935 году, а также в ходе защиты докторской диссертации Тьюринга в Институте перспективных исследований в Принстоне (штат Нью-Джерси) в 1936-1937 годах.

Независимо друг от друга Джи Преспер Эккерт и Джон Мочли, которые разрабатывали ENIAC в школе электротехники в Университете штата Пенсильвания, писали о концепции машины, хранящей программу в памяти в декабре 1943 года. При планировании новой машины, EDVAC, Эккерт писал в январе 1944 года, что она будут хранить данные и программы в новом устройстве с адресацией памяти с помощью задержки металлической ртути. Это был первый раз, когда было предложено строительство на практике машины, хранящей программу в памяти. В то же время он и Мочли не были осведомлены о работе Тьюринга (фото ниже).

Архитектура компьютера: принцип фон Неймана

Фон Нейман был вовлечен в «Проект Манхэттен» в Национальной лаборатории в Лос-Аламосе, который требовал огромного количества вычислений. Это привлекло его к проекту ENIAC летом 1944 года. Там он вступил в дискуссии по разработке компьютера EDVAC. В рамках этой группы он написал работу под названием «Первый проект доклада о EDVAC», основанную на работе Эккерта и Мочли. Она была незавершенной, когда его коллега Гольдштейн распространил проект с именем фон Неймана (к слову, Эккерт и Мочли были ошарашены такой новостью). Этот документ был прочитан десятками коллег фон Неймана в Америке и Европе и оказал серьезное влияние на следующий этап компьютерных разработок.

Основные принципы архитектуры фон Неймана, изложенные в «Первом проекте», набирали широкую известность, в то время как Тьюринг освещал свой доклад об электронном калькуляторе, который был подробно описан в технике и программировании. В нем было изложено и представление автора о машине, которая называлась Automatic Computing Engine (ACE). Он представил его исполнительному комитету британской Национальной физической лаборатории в 1946 году. Спустя некоторое время даже были произведены различные успешные реализации конструкции ACE.

Начало реализации проектов

И проект фон Неймана, и документы Тьюринга описывали компьютеры, хранящие в памяти определенную программу, но статья фон Неймана достигла большей циркуляции в обществе, и компьютерная архитектура стала известна как архитектура Джона фон Неймана.

В 1945 году профессор Нейман, который тогда работал в инженерной школе в Филадельфии, где и был построен первый ENIAC, выпустил от имени группы своих коллег доклад о логическом проектировании цифровых вычислительных машин. В докладе содержится довольно подробное предложение по конструкции машины, которая с тех пор стала известна как EDVAC. Она тогда только недавно была создана в Америке, но доклад вдохновил фон Неймана на создание EDSAC.

Maniacs и Joniacs

В 1947 году Беркс, Гольдштейн и фон Нейман опубликовали еще один доклад, в котором освещалась конструкция другого типа машины (на этот раз параллельная), которая должна была стать чрезвычайно быстрой, способной, возможно, осуществлять до 20 000 операций в секунду. Они отметили, что нерешенной проблемой при построении ее была разработка подходящей памяти, все содержимое которой должно быть мгновенно доступно. Сначала они предложили использовать специальную вакуумную трубку, называемую Selectron, которая была изобретена в Принстонской лаборатории. Такие трубки были дорогими, и сделать их очень трудно, особенно если используется данная архитектура. Фон Нейман впоследствии решил построить машину, основанную на памяти Williams. Эта машина, которая была завершена в июне 1952 года в Принстоне, стала широко известна MANIAC (или просто Maniacs). Ее дизайн вдохновил создателей на конструирование полудюжины или более аналогичных приборов, которые сейчас строятся в Америке и называются шуточно Johniacs.

Принципы создания

Один из самых современных цифровых компьютеров, воплощавших разработки и усовершенствования в технике автоматического электронного вычисления, был продемонстрирован в Национальной физической лаборатории в Теддингтоне, где он был спроектирован и построен небольшой группой математиков, электронщиков и инженеров-исследователей, при содействии ряда производственных инженеров из английской Electric Company Ltd. Оборудование до сих пор находится в лаборатории, но только как опытный образец гораздо большей установки, которая известна как Automatic Computing Engine. Но, несмотря на сравнительно небольшую массу и содержание только 800 термоионных клапанов, он является чрезвычайно быстрой и универсальной счетной машиной.

Основные понятия и абстрактные принципы расчета с помощью машины были сформулированы доктором Тьюрингом на базе все того же Лондонского математического общества еще в 1936 году, но работа над такими машинами в Великобритании была задержана войной. В 1945 году рассмотрение проблем создания таких устройств продолжилось в Национальной физической лаборатории доктором Вормсли, суперинтендантом лаборатории Отделения математики. Он присоединился к Тьюрингу со своим небольшим штатом специалистов, а к 1947 году предварительное планирование было достаточно продвинуто, чтобы оправдать создание специальной группы.

Первые компьютеры на архитектуре фон Неймана

Первый проект описывает схему, которая была использована многими университетами и корпорациями, чтобы построить свои компьютеры. Среди них только ILLIAC и ORDVAC имели совместимые наборы инструкций.

Классическая архитектура фон Неймана была воплощена в Манчестерской малой экспериментальной машине (SSEM) по прозвищу Baby из университета Манчестера, которая совершила свой первый успешный запуск как устройство, хранящее программу в памяти, 21 июня 1948 года.

EDSAC из Кембриджского университета, первый практический электронный компьютер такого типа, был запущен первый раз успешно в мае 1949 года.

Развитие созданных моделей

IBM SSEC имел возможность рассматривать инструкции как данные и был публично продемонстрирован 27 января 1948 года. Эта способность утверждалась в патенте США. Однако это была частично электромеханическая машина, а не полностью электронная. На практике инструкции были прочитаны с бумажной ленты из-за его ограниченной памяти.

Baby был первым полностью электронным компьютером для запуска сохраненных программ. Он запускал программу факторинга в течение 52 минут 21 июня 1948 года после запуска простого вычисления деления и расчета, который показывает, что два числа являются взаимно простыми.

ENIAC был изменен, чтобы работать в качестве примитивной ЭВМ только для чтения, но по той же архитектуре, и был продемонстрирован 16 сентября 1948 года, а запуск программы Адель Гольдштейн организовала с помощью фон Неймана.

BINAC провел несколько тестовых программ в феврале, марте и апреле 1949 года, хотя и не был завершен до сентября 1949 года. Кроме того, осуществлялись тестовые запуски (некоторые успешные) других электронно-вычислительных машин, для которых свойственна данная архитектура. Фон Нейман, к слову, продолжал работу и над проектом "Манхеттен". Вот такой универсальный человек.

Эволюция шинной системы архитектуры

Через десятилетия, уже в 60-е и 70-е годы, компьютеры в целом стали меньше и быстрее, что привело к некоторым эволюциям, которые претерпела архитектура ЭВМ по фон Нейману. Например, отображение в памяти ввода и вывода позволяет соответствующим устройствам, данные и инструкции по интеграции в систему которых будут обрабатываться, оставаться в памяти. Одна шинная система может быть использована для обеспечения модульной системы с меньшими. Это иногда называют «рационализацией» архитектуры. В последующие десятилетия простые микроконтроллеры иногда не используют некоторые черты типичной модели, чтобы снизить стоимость и размер. А вот большие компьютеры следуют установленной архитектуре, так как в них добавлены функции для повышения производительности.

В основу построения подавляющего большинства компьютеров положены следующие общие принципы, сформулированные в 1945 г. американским ученым Джоном фон Нейманом (Рисунок 8.5). Впервые эти принципы были опубликованы в его предложениях по машине EDVAC. Эта ЭВМ была одной из первых машин с хранимой программой, т.е. с программой, запомненной в памяти машины, а не считываемой с перфокарты или другого подобного устройства.

Рисунок 9.5 – Джон фон Нейман, 1945 г.

1. Принцип программного управления . Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды.

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой ячейке памяти, используются команды условного или безусловного переходов, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды “стоп”.

Таким образом, процессор исполняет программу автоматически, без вмешательства человека.

По мнению Джона фон Неймана, компьютер должен состоять из центрального арифметико-логического устройства, центрального устройства управления, запоминающего устройства и устройства ввода-вывода информации. Компьютер, по его мнению, должен работать с двоичными числами, быть электронным (а не электрическим); выполнять операции последовательно.

Все вычисления, предписанные алгоритмом решения задачи, должны быть представлены в виде программы, состоящей из последовательности управляющих слов-команд. Каждая команда содержит указания на конкретную выполняемую операцию, место нахождения (адреса) операндов и ряд служебных признаков. Операнды - переменные, значения которых участвуют в операциях преобразования данных. Список (массив) всех переменных (входных данных, промежуточных значений и результатов вычислений) является еще одним неотъемлемым элементом любой программы.

Для доступа к программам, командам и операндам используются их адреса. В качестве адресов выступают номера ячеек памяти ЭВМ, предназначенных для хранения объектов. Информация(командная и данные: числовая, текстовая, графическая и т.п.) кодируется двоичными цифрами 0 и 1.



Поэтому различные типы информации, размещенные в памяти ЭВМ, практически неразличимы, идентификация их возможна лишь при выполнении программы, согласно ее логике, по контексту.

2. Принцип однородности памяти . Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности . Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Принципы фон-Неймана практически можно реализовать множеством различных способов. Здесь приведем два из них: ЭВМ с шиной и канальной организацией. Перед тем, как описать принципы функционирования ЭВМ, введем несколько определений.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Весьма часто употребляется термин конфигурация ЭВМ , под которым понимается компоновка вычислительного устройства с четким определением характера, количества, взаимосвязей и основных характеристик его функциональных элементов. Термин «организация ЭВМ » определяет, как реализованы возможности ЭВМ,

Команда совокупность сведений, необходимых процессору для выполнения определенного действия при выполнении программы.

Команда состоит из кода операции , содержащего указание на операцию, которую необходимо выполнить, и несколько адресных полей , содержащих указание на месте расположения операндов команды.

Способ вычисления адреса по информации, содержащейся в адресном поле команды, называется режимом адресации . Множество команд, реализованных в данной ЭВМ, образует её систему команд.

· использование двоичной системы для представления чисел. В работе фон Неймана продемонстрированы преимущества двоичной системы для технической реализации, удобство выполнения арифметических и логических операций. В дальнейшем стали обрабатывать нечисловые виды информации: текстовую, графическую, звуковую и т.д. Двоичное кодирование- основа современного компьютера.

· принципы «хранимой программы». Программа, записанная с помощью двоичных кодов, должна храниться в той же самой памяти, что и обрабатываемые данные.

· принцип адресности. Команды и данные перемещаются в ячейки памяти доступ к котором осуществляется по адресу. Адресом ячейки является ее ее номер, местонахождение информации в ОЗУ так же кодируется в виде двоичных систем.

В ЭВМ по принципу фон Неймана происходит последовательное считывание команд из памяти и их выполнение. Номер (адрес) очередной ячейки памяти из которой извлечена команда программы формируется и хранится в специальном устройстве счетчике команд.

В соответствии с принципами фон Неймана компьютер должен иметь в составе следующие устройства:

· Арифметико-логическое устройство (АЛУ) предназначено для обработки закодированной информации и может выполнять арифметические и логические операции:;

· Устройство управление (УУ) организует выполнение программ;

· Память или запоминающее устройство (ЗУ)- хранение программ и данных. Память компьютера состоит из некоторого количества пронумерованных ячеек. В каждой из них могут находиться обрабатываемы данные или инструкции программ;

· Внешние устройства для ввода и вывода информации, обеспечивают прямую и обратную связь.

Рассмотрим состав и назначение основных блоков ПК (рис. 2).

Рис. 2. Структурная схема персонального компьютера

Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

В состав микропроцессора входят:

§ устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;

§ арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);

§ микропроцессорная память (МПП) – служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры – быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);

§ интерфейсная система микропроцессора – реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) – совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O – Input/Output port) – аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины.

Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой.

Системная шина включает в себя:

§ кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;

§ кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;

§ кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;

§ шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

1) между микропроцессором и основной памятью;

2) между микропроцессором и портами ввода-вывода внешних устройств;

3) между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему – контроллер шины, формирующий основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память (ОП). Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ).

ПЗУ служит для хранения неизменяемой (постоянной) программной и справочной информации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя).

ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка ОЗУ следует отметить невозможность сохранения информации в ней после выключения питания машины (энергозависимость).

Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, но наиболее распространенными, имеющимися практически на любом компьютере, являются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дисках.

Назначение этих накопителей – хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. Различаются НЖМД и НГМД лишь конструктивно, объемами хранимой информации и временем поиска, записи и считывания информации.

В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стриммеры), накопители на оптических дисках (CD-ROM – Compact Disk Read Only Memory – компакт-диск с памятью, только читаемой) и др. (см. подразд. 4.4).

Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК.

Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания – аккумулятору и при отключении машины от сети продолжает работать.

Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50 - 80% всего ПК. От состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом.

ВУ ПК обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ:

§ внешние запоминающие устройства (ВЗУ) или внешняя память ПК;

§ диалоговые средства пользователя;

§ устройства ввода информации;

§ устройства вывода информации;

§ средства связи и телекоммуникации.

Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации.

Видеомонитор (дисплей) – устройство для отображения вводимой и выводимой из ПК информации (см. подразд. 4.5).

Устройства речевого ввода-вывода относятся к быстроразвивающимся средствам мультимедиа. Устройства речевого ввода – это различные микрофонные акустические системы, "звуковые мыши", например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать.

Устройства речевого вывода – это различные синтезаторы звука, выполняющие преобразование цифровых кодов в буквы и слова, воспроизводимые через громкоговорители (динамики) или звуковые колонки, подсоединенные к компьютеру.

К устройствам ввода информации относятся:

§ клавиатура – устройство для ручного ввода числовой, текстовой и управляющей информации в ПК (см. подразд. 4.5);

§ графические планшеты (диджитайзеры) – для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК;

§ сканеры (читающие автоматы) – для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат (см. подразд. 4.5);

§ манипуляторы (устройства указания): джойстик – рычаг, мышь, трекбол - шар в оправе, световое перо и др. – для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК;

§ сенсорные экраны – для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК.

К устройствам вывода информации относятся:

§ принтеры – печатающие устройства для регистрации информации на бумажный носитель (см. подразд. 4.5);

§ графопостроители (плоттеры) – для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные. По конструкции плоттеры подразделяются на планшетные и барабанные. Основные характеристики всех плоттеров примерно одинаковые: скорость вычерчивания – 100 - 1000 мм/с, у лучших моделей возможны цветное изображение и передача полутонов; наибольшая разрешающая способность и четкость изображения у лазерных плоттеров, но они самые дорогие.

Устройства связи и телекоммуникации используются для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифро-аналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, "стыки", мультиплексоры передачи данных, модемы).

В частности, показанный на рис. 4.2 сетевой адаптер является внешним интерфейсом ПК и служит для подключения его к каналу связи для обмена информацией с другими ЭВМ, для работы в составе вычислительной сети. В глобальных сетях функции сетевого адаптера выполняет модулятор-демодулятор (модем, см. гл. 7).

Многие из названных выше устройств относятся к условно выделенной группе – средствам мультимедиа.

Средства мультимедиа (multimedia – многосредовость) – это комплекс аппаратных и программных средств, позволяющих человеку общаться с компьютером, используя самые разные, естественные для себя среды: звук, видео, графику, тексты, анимацию и др.

К средствам мультимедиа относятся устройства речевого ввода и вывода информации; широко распространенные уже сейчас сканеры (поскольку они позволяют автоматически вводить в компьютер печатные тексты и рисунки); высококачественные видео- (video-) и звуковые (sound-) платы, платы видеозахвата (videograbber), снимающие изображение с видеомагнитофона или видеокамеры и вводящие его в ПК; высококачественные акустические и видеовоспроизводящие системы с усилителями, звуковыми колонками, большими видеоэкранами. Но, пожалуй, еще с большим основанием к средствам мультимедиа относят внешние запоминающие устройства большой емкости на оптических дисках, часто используемые для записи звуковой и видеоинформации.

CD широко используются, например, при изучении иностранных языков, правил дорожного движения, бухгалтерского учета, законодательства вообще и налогового законодательства в частности. И все это сопровождается текстами и рисунками, речевой информацией и мультипликацией, музыкой и видео. В чисто бытовом аспекте CD можно использовать для хранения аудио- и видеозаписей, т.е. использовать вместо плейерных аудиокассет и видеокассет. Следует упомянуть, конечно, и о большом количестве программ компьютерных игр, хранимых на CD.

Таким образом, CD-ROM открывает доступ к огромным объемам разнообразной и по функциональному назначению, и по среде воспроизведения информации, записанной на компакт-дисках.

Дополнительные схемы. К системной шине и к МП ПК наряду с типовыми внешними устройствами могут быть подключены и некоторые дополнительные платы с интегральными микросхемами, расширяющие и улучшающие функциональные возможности микропроцессора: математический сопроцессор, контроллер прямого доступа к памяти, сопроцессор ввода-вывода, контроллер прерываний и др.

Математический сопроцессор широко используется для ускоренного выполнения операций над двоичными числами с плавающей запятой, над двоично-кодированными десятичными числами, для вычисления некоторых трансцендентных, в том числе тригонометрических, функций. Математический сопроцессор имеет свою систему команд и работает параллельно (совмещено во времени) с основным МП, но под управлением последнего. Ускорение операций происходит в десятки раз. Последние модели МП, начиная с МП 80486 DX, включают сопроцессор в свою структуру.

Контроллер прямого доступа к памяти освобождает МП от прямого управления накопителями на магнитных дисках, что существенно повышает эффективное быстродействие ПК. Без этого контроллера обмен данными между ВЗУ и ОЗУ осуществляется через регистр МП, а при его наличии данные непосредственно передаются между ВЗУ и ОЗУ, минуя МП.

Сопроцессор ввода-вывода за счет параллельной работы с МП значительно ускоряет выполнение процедур ввода-вывода при обслуживании нескольких внешних устройств (дисплей, принтер, НЖМД, НГМД и др.); освобождает МП от обработки процедур ввода-вывода, в том числе реализует и режим прямого доступа к памяти.

Важнейшую роль играет в ПК контроллер прерываний.

Прерывание – временный останов выполнения одной программы в целях оперативного выполнения другой, в данный момент более важной (приоритетной) программы

Прерывания возникают при работе компьютера постоянно . Достаточно сказать, что все процедуры ввода-вывода информации выполняются по прерываниям, например, прерывания от таймера возникают и обслуживаются контроллером прерываний 18 раз в секунду (естественно, пользователь их не замечает).

Контроллер прерываний обслуживает процедуры прерывания, принимает запрос на прерывание от внешних устройств, определяет уровень приоритета этого запроса и выдает сигнал прерывания в МП. МП, получив этот сигнал, приостанавливает выполнение текущей программы и переходит к выполнению специальной программы обслуживания того прерывания, которое запросило внешнее устройство. После завершения программы обслуживания восстанавливается выполнение прерванной программы. Контроллер прерываний является программируемым.

Первым арифмометром, способным выполнять четыре основных арифметических действия, стал арифмометр знаменитого французского ученого и философа Блеза Паскаля. Основным элементом в нем было зубчатое колесо, изобретение которого уже само по себе стало ключевым событием в истории вычислительной техники. Хотелось бы отметить, что эволюция в области вычислительной техники носит неравномерный, скачкообразный характер: периоды накопления сил сменяются прорывами в разработках, после чего наступает период стабилизации, во время которого достигнутые результаты используются практически и одновременно накапливаются знания и силы для очередного рывка вперед. После каждого витка процесс эволюции выходит на новую, более высокую ступень.

В 1671 году немецкий философ и математик Густав Лейбниц также создает арифмометр на основе зубчатого колеса особенной конструкции — зубчатою колеса Лейбница. Арифмометр Лейбница, как и арифмометры его предшественников, выполнял четыре основных арифметических действия. На этом данный период закончился, и человечество в течение почти полутора веков копило силы и знания для следующего витка эволюции вычислительной техники. XVIII и XIX века были временем, когда бурно развивались различные науки, в том числе математика и астрономия. В них часто возникали задачи, требующие длительных и трудоемких вычислений.

Еще одним известным человеком в истории вычислительной техники стал английский математик Чарльз Бэббидж. В 1823 году Бэббидж начал работать над машиной для вычисления полиномов, но, что более интересно, эта машина должна была, кроме непосредственного производства вычислений, выдавать результаты — печатать их на негативной пластине для фотопечати. Планировалось, что машина будет приводиться в действие паровым двигателем. Из-за технических трудностей Бэббиджу до конца не удалось реализовать свой проект. Здесь впервые возникла идея использовать некоторое внешнее (периферийное) устройство для выдачи результатов вычислений. Отметим, что другой ученый, Шойц, в 1853 году все же реализовал машину, задуманную Бэббиджем (она получилась даже меньше, чем планировалась). Наверное, Бэббиджу больше нравился творческий процесс поиска новых идей, чем воплощение их в нечто материальное. В 1834 году он изложил принципы работы очередной машины, которая была названа им «Аналитической». Технические трудности вновь не позволили ему до конца реализовать свои идеи. Бэббидж смог довести машину лишь до стадии эксперимента. Но именно идея является двигателем научно-технического прогресса. Очередная машина Чарльза Бэббиджа была воплощением следующих идей:

Управление производственным процессом. Машина управляла работой ткацкого станка, изменяя узор создаваемой ткани в зависимости от сочетания отверстий на специальной бумажной ленте. Эта лента стала предшественницей таких знакомых нам всем носителей информации, как перфокарты и перфоленты.

Программируемость. Работой машины также управляла специальная бумажная лента с отверстиями. Порядок следования отверстий на ней определял команды и обрабатываемые этими командами данные. Машина имела арифметическое устройство и память. В состав команд машины входила даже команда условного перехода, изменяющая ход вычислений в зависимости от некоторых промежуточных результатов.

В разработке этой машины принимала участие графиня Ада Августа Лавлейс, которую считают первой в мире программистом.

Идеи Чарльза Бэббиджа развивались и использовались другими учеными. Так, в 1890 году, на рубеже XX века, американец Герман Холлерит разработал машину, работающую с таблицами данных (первый Excel?). Машина управлялась программой на перфокартах. Она использовалась при проведении переписи населения в США в 1890 году. В 1896 году Холлерит основал фирму, явившуюся предшественницей корпорации IBM. Со смертью Бэббиджа в эволюции вычислительной техники наступил очередной перерыв вплоть до 30-х годов XX века. В дальнейшем все развитие человечества стало немыслимым без компьютеров.

В 1938 году центр разработок ненадолго смещается из Америки в Германию, где Конрад Цузе создает машину, которая оперирует, в отличие от своих предшественниц, не десятичными числами, а двоичными. Эта машина также была все еще механической, но ее несомненным достоинством было то, что в ней была реализована идея обработки данных в двоичном коде. Продолжая свои работы, Цузе в 1941 году создал электромеханическую машину, арифметическое устройство которой было выполнено на базе реле. Машина умела выполнять операции с плавающей точкой.

За океаном, в Америке, в этот период также шли работы по созданию подобных электромеханических машин. В 1944 году Говард Эйкен спроектировал машину, которую назвали Mark-1 . Она, как и машина Цузе, работала на реле. Но из-за того, что эта машина явно была создана под влиянием работ Бэббиджа, она оперировала с данными в десятичной форме.

Естественно, из-за большого удельного веса механических частей эти машины были обречены.

Четыре поколения ЭВМ

К концу тридцатых годов XX столетия потребность в автоматизации сложных вычислительных процессов сильно возросла. Этому способствовало бурное развитие таких отраслей, как самолетостроение, атомная физика и других. С 1945 года по наши дни вычислительная техника прошла 4 поколения в своём развитии:

Первое поколение

Первое поколение (1945-1954) — компьютеры на электронных лампах. Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой.

Начиная с 1943 года, группа специалистов под руководством Говарда Айткена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9х15 метров, весил 30 тонн и потреблял мощность 150 киловатт. ENIAC имел и существенный недостаток – управление им осуществлялось с помощью коммутационной панели, у него отсутствовала память, и для того чтобы задать программу приходилось в течение нескольких часов или даже дней подсоединять нужным образом провода. Худшим из всех недостатков была ужасающая ненадежность компьютера, так как за день работы успевало выйти из строя около десятка вакуумных ламп.

Чтобы упростить процесс задания программ, Моучли и Эккерт стали конструировать новую машину, которая могла бы хранить программу в своей памяти. В 1945 году к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Необходимо отметить огромную роль американского математика фон Неймана в становлении техники первого поколения. Нужно было осмыслить сильные и слабые стороны ENIAC и дать рекомендации для последующих разработок. В отчете фон Неймана и его коллег Г. Голдстайна и А.Беркса (июнь 1946 года) были четко сформулированы требования к структуре компьютеров. Многие положения этого отчета получили название принципов Фон Неймана.

Первые проекты отечественных ЭВМ были предложены С.А. Лебедевым, Б.И. Рамеевым в 1948г. В 1949-51гг. по проекту С.А. Лебедева была построена МЭСМ (малая электронно-счетная машина). Первый пробный пуск макета машины состоялся в ноябре 1950 года, а в эксплуатацию машина была сдана в 1951 году. МЭСМ работала в двоичной системе, с трехадресной системой команд, причем программа вычислений хранилась в запоминающем устройстве оперативного типа. Машина Лебедева с параллельной обработкой слов представляла собой принципиально новое решение. Она была одной из первых в мире и первой на европейском континенте ЭВМ с хранимой в памяти программой.

К ЭВМ 1-го поколения относится и БЭСМ-1 (большая электронно-счетная машина), разработка которой под руководством С.А. Лебедева была закончена в 1952г., она содержала 5 тыс. ламп, работала без сбоев в течение 10 часов. Быстродействие достигало 10 тыс. операций в секунду (Приложение 1).

Почти одновременно проектировалась ЭВМ «Стрела»(Приложение 2) под руководством Ю.Я. Базилевского, в 1953г. она была запущена в производство. Позже появилась ЭВМ «Урал — 1″(Приложение 3), положившая начало большой серии машин «Урал», разработанных и внедренных в производство под руководством Б.И. Рамеева. В 1958г. запущена в серийное производство ЭВМ первого поколения М – 20 (быстродействие до 20 тыс. операций/с).

ЭВМ первого поколения обладали быстродействием несколько десятков тысяч операций в секунду. В качестве внутренней памяти применялись ферритовые сердечники, а АЛУ и УУ были построены на электронных лампах. Быстродействие ЭВМ определялось более медленным компонентом – внутренней памятью и это снижало общий эффект.

ЭВМ первого поколения являлась ориентация на выполнение арифметических операций. При попытках приспособления для задач анализа они оказывались неэффективными.

Языков программирования как таковых еще не было, и для кодирования своих алгоритмов программисты использовали машинные команды или ассемблеры. Это усложняло и затягивало процесс программирования.

К концу 50-х годов средства программирования претерпевают принципиальные изменения: осуществляется переход к автоматизации программирования с помощью универсальных языков и библиотек стандартных программ. Использование универсальных языков повлекло возникновение трансляторов.

Программы выполнялись задача за задачей, т.е. оператору надо было следить за ходом решения задачи и при достижении конца самому инициировать выполнение следующей задачи.

Второе поколение

Во втором поколении компьютеров (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны — далекие предки современных жестких дисков. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.

Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня — Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров; программирование, оставаясь наукой, приобретает черты ремесла.

Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризировали свою бухгалтерию, предвосхищая моду на двадцать лет.

Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XX века.

Патент на открытие транзистора был выдан в 1948 году американцам Д.Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии. Скорости переключения уже первых транзисторных элементов оказались в сотни раз выше, чем ламповых, надежность и экономичность – тоже. Впервые стала широко применяться память на ферритовых сердечниках и тонких магнитных пленках, были опробованы индуктивные элементы – параметроны.

Первая бортовая ЭВМ для установки на межконтинентальной ракете – «Атлас» – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта.В 1961 году наземные компьютеры «стретч» фирмы «Бэрроуз» управляли космическими полетами ракет «Атлас», а машины фирмы IBM контролировали полет астронавта Гордона Купера. Под контролем ЭВМ проходили полеты беспилотных кораблей типа «Рейнджер» к Луне в 1964 году, а также корабля«Маринер» к Марсу. Аналогичные функции выполняли и советские компьютеры.

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые запоминающие устройства на дисках появились в машинах IBM-305 и RAMAC(Приложение 4). Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об/мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10000 знаков каждая.

Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии.

Появляются первые мини-ЭВМ (например, PDP-8(Приложение 5)).

В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан-2» были созданы в 1959-1961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск-32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ.

Рекордсменом среди ЭВМ второго поколения стала БЭСМ-6 (Приложение 6), имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени.

Специально для автоматизации инженерных расчетов в Институте кибернетики Академии наук УССР под руководством академика В.М. Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью машины МИР-2 явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране.

Построение таких систем, имевших в своем составе около 100 тысяч переключательных элементов, было бы просто невозможным на основе ламповой техники. Таким образом, второе поколение рождалось в недрах первого, перенимая многие его черты. Однако к середине 60-х годов бум в области транзисторного производства достиг максимума – произошло насыщение рынка. Дело в том, что сборка электронного оборудования представляла собой весьма трудоемкий и медленный процесс, который плохо поддавался механизации и автоматизации. Таким образом, созрели условия для перехода к новой технологии, которая позволила бы приспособиться к растущей сложности схем путем исключения традиционных соединений между их элементами.

Третье поколение

Наконец, в третьем поколении ЭВМ (1965-1974) впервые стали использоваться интегральные схемы — целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (то, что сейчас называют микросхемами). В это же время появляется полупроводниковая память, которая и по всей день используется в персональных компьютерах в качестве оперативной. Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р.Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся ENIAK, размерами 9х15 метров, в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ — серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. В 1973 была выпущена первая модель ЭВМ серии ЕС, а с 1975 года появились модели ЕС-1012, ЕС-1032, ЕС-1033, ЕС-1022, а позже более мощная ЕС-1060.

В рамках третьего поколения в США была построена уникальная машина «ИЛЛИАК-4», в составе которой в первоначальном варианте планировалось использовать 256 устройств обработки данных, выполненных на монолитных интегральных схемах. Позднее проект был изменен, из-за довольно высокой стоимости (более 16 миллионов долларов). Число процессоров пришлось сократить до 64, а также перейти к интегральным схемам с малой степенью интеграции. Сокращенный вариант проекта был завершен в 1972 году, номинальное быстродействие «ИЛЛИАК-4» составило 200 миллионов операций в секунду. Почти год этот компьютер был рекордсменом в скорости вычислений.

Еще в начале 60-х появляются первые миникомпьютеры — небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера — что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию — ведь микропроцессор является сердцем и душой нашего с вами персонального компьютера.

Но и это еще не все — поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть — зародыш того, что мы сейчас называем Интернетом. И в том же 1969 г. одновременно появились операционная система Unix и язык программирования С («Си»), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Четвертое поколение

Очередная смена элементной базы привела к смене поколений. В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее существенное снижение размеров и стоимости ЭВМ. Работа с программным обеспечением стала более дружественной, что повлекло за собой рост количества пользователей.

В принципе, при такой степени интеграции элементов стало возможным попытаться создать функционально полную ЭВМ на одном кристалле. Соответствующие попытки были предприняты, хотя они и встречались, в основном, недоверчивой улыбкой. Наверное, этих улыбок стало бы меньше, если бы можно было предвидеть, что именно эта идея станет причиной вымирания больших ЭВМ через каких-нибудь полтора десятка лет.

Тем не менее, в начале 70-х годов фирмой Intel был выпущен микропроцессор (МП) 4004. И если до этого в мире вычислительной техники были только три направления (супер-ЭВМ, большие ЭВМ (мэйнфреймы) и мини-ЭВМ), то теперь к ним прибавилось еще одно — микропроцессорное. В общем случае под процессором понимают функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрированы все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем.

Итак, первый микропроцессор 4004 был создан фирмой Intel на рубеже 70-х годов. Он представлял собой 4-разрядное параллельное вычислительное устройство, и его возможности были сильно ограничены. 4004 мог производить четыре основные арифметические операции и применялся поначалу только в карманных калькуляторах. Позднее сфера его применения была расширена за счет использования в различных системах управления (например, для управления светофорами). Фирма Intel, правильно предугадав перспективность микропроцессоров, продолжила интенсивные разработки, и один из ее проектов в конечном итоге привел к крупному успеху, предопределившему будущий путь развития вычислительной техники.

Им стал проект по разработке 8-разрядного процессора 8080 (1974 г.). Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого молодой Билл Гейтс написал один из своих первых интерпретаторов языка BASIC. Наверное, именно с этого момента следует вести отсчет 5-го поколения.

Пятое поколение

ереход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.

Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них — собственно компьютер, в котором связь с пользователем осуществляет блок, называемый «интеллектуальным интерфейсом». Задача интерфейса — понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

К классу суперкомпьютеров относят компьютеры, которые имеют максимальную на время их выпуска производительность, или так называемые компьтеры 5-го поколения.

Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 — 1964, см. компьютеры второго поколения), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Это LARC фирмы UNIVAC, Stretch фирмы IBM и «CDC-6600″ (семейство CYBER) фирмы Control Data Corporation, в них были применены методы параллельной обработки (увеличивающие число операций, выполняемых в единицу времени), конвейеризация команд (когда во время выполнения одной команды вторая считывается из памяти и готовится к выполнению) и параллельная обработка при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе. Компьютеры, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем. До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs. Первая известна, в частности, своими мэйнфреймами UNIVAC-1108 и UNIVAC-1110, которые широко использовались в университетах и государственных организациях.

После слияния Sperry Univac и Burroughs объединенная фирма UNISYS продолжала поддерживать обе линии мэйнфреймов с сохранением совместимости снизу вверх в каждой. Это является ярким свидетельством непреложного правила, поддерживавшего развитие мэйнфреймов — сохранение работоспособности ранее разработанного программного обеспечения.

В мире суперкомпьютеров известна и компания Intel. Многопроцессорные компьютеры Paragon фирмы Intel в семействе многопроцессорных структур с распределенной памятью стали такой же классикой.

Принципы Фон-Неймана

В 1946 году Д. фон Нейман, Г. Голдстайн и А. Беркс в своей совместной статье изложили новые принципы построения и функционирования ЭВМ. В последствие на основе этих принципов производились первые два поколения компьютеров. В более поздних поколениях происходили некоторые изменения, хотя принципы Неймана актуальны и сегодня. По сути, Нейману удалось обобщить научные разработки и открытия многих других ученых и сформулировать на их основе принципиально новые принципы:
1. Принцип представления и хранения чисел.
Для представления и хранения чисел используется двоичная система счисления. Преимущество перед десятичной системой счисления заключается в том, что бит легко реализуется, память на битах большого объема достаточно дешевая, устройства можно делать достаточно простыми, арифметические и логические операции в двоичной системе счисления также выполняются достаточно просто.
2. Принцип программного управления ЭВМ.
Работой ЭВМ управляет программа, состоящая из набора команд. Команды выполняются последовательно друг за другом. Команды обрабатывают данные, хранимые в памяти компьютера.
3. Принцип хранимой программы.
Память компьютера используется не только для хранения данных, но и программ. При этом и команды программы и данные кодируются в двоичной системе счисления, т.е. их способ записи одинаков. Поэтому в определенных ситуациях над командами можно выполнять те же действия, что и над данными.
4. Принцип прямого доступа к памяти.
Ячейки оперативной памяти ЭВМ имеют последовательно пронумерованные адреса. В любой момент можно обратиться к любой ячейке памяти по ее адресу.
5. Принцип ветвления и циклических вычислений.
Команды условного перехода позволяют реализовать переход к любому участку кода, обеспечивая тем самым возможность организации ветвления и повторного выполнения некоторых участков программы.
Самым главным следствием этих принципов можно назвать то, что теперь программа уже не была постоянной частью машины (как например, у калькулятора). Программу стало возможно легко изменить. А вот аппаратура, конечно же, остается неизменной, и очень простой. Для сравнения, программа компьютера ENIAC (где не было хранимой в памяти программы) определялась специальными перемычками на панели. Чтобы перепрограммировать машину (установить перемычки по-другому) мог потребоваться далеко не один день.
И хотя программы для современных компьютеров могут разрабатываться месяцами, однако их инсталляция (установка на компьютере) занимает даже для больших программ несколько минут. Такая программа может быть установлена на миллионах компьютеров, и работать на каждом из них годами.

Приложения

Приложение 1

Приложение 2

ЭВМ “Урал”

Приложение 3

ЭВМ “Стрела”

Приложение 4

IBM-305 и RAMAC

Приложение 5

мини-ЭВМ PDP-8

Приложение 6

Литература:

1) Бройдо В.Л. Вычислительные системы, сети и телекоммуникации. Учебник для вузов. 2-е изд. – СПб.: Питер,2004

2) Жмакин А.П. Архитектура ЭВМ. – СПб.: БХВ — Петербург, 2006

3) Семененко В.А. и др. Электронные вычислительные машины. Учеб.пособие для ПТУ – М.: Высшая школа, 1991

На бытовом уровне термин «архитектура» у большинства людей прочно ассоциируется с различными зданиями и другими инженерными сооружениями. Так, можно говорить об архитектуре готического собора, Эйфелевой башни или оперного театра. В других областях этот термин применяется достаточно редко, однако для компьютеров понятие «архитектура ЭВМ» (электронно-вычислительная машина) уже прочно устоялось и широко используется, начиная с 70-х годов прошлого века. Для того чтобы разобраться в том, каким образом происходит выполнение программ, сценариев на компьютере, необходимо в первую очередь знать, как устроена работа каждой из его составляющих. Основы учения об архитектуре вычислительных машин, которые рассматриваются на уроке, были заложены Джоном фон Нейманом. Более подробно о логических узлах, а также о магистрально-модульном принципе архитектуры современных персональных компьютеров можно будет узнать на этом уроке.

Принципы, лежащие в основе архитектуры ЭВМ, были сформулированы в 1945 году Джоном фон Нейманом, который развил идеи Чарльза Беббиджа, представлявшего работу компьютера как работу совокупности устройств: обработки, управления, памяти, ввода-вывода.

Принципы фон Неймана.

1. Принцип однородности памяти. Над командами можно выполнять такие же действия, как и над данными.

2. Принцип адресуемости памяти. Основная память структурно состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.

3. Принцип последовательного программного управления. Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

4. Принцип жесткости архитектуры. Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Компьютеры, построенные на принципах фон Неймана, имеют классическую архитектуру, но, кроме нее, существуют другие типы архитектуры. Например, Гарвардская. Ее отличительными признаками являются:

  • хранилище инструкций и хранилище данных представляют собой разные физические устройства;
  • канал инструкций и канал данных также физически разделены.

В истории развития вычислительной техники качественный скачок происходил примерно каждые 10 лет. Такой скачок связывает с появлением нового поколения ЭВМ. Идея делить машины появилась по причине того, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования. Более подробно все этапы развития ЭВМ показаны на Рис. 2. Для того чтобы понять, как и почему одно поколение сменялось другим, необходимо знать смысл таких понятий, как память, быстродействие, степень интеграции и т. д.

Рис. 2. Поколения ЭВМ ()

Среди компьютеров не классической, не фон Неймановской архитектуры, можно выделить так называемые нейрокомпьютеры. В них моделируется работа клеток головного мозга человека, нейронов, а также некоторых отделов нервной системы, способных к обмену сигналами.

Каждый логический узел компьютера выполняет свои функции. Функции процессора (Рис. 3):

- обработка данных (выполнение над ними арифметических и логических операций);

- управление всеми остальными устройствами компьютера.

Рис. 3. Центральный процессор компьютера ()

Программа состоит из отдельных команд. Команда включает в себя код операции, адреса операндов (величин, которые участвуют в операции) и адрес результата.

Выполнение команды делится на следующие этапы:

· выборку команды;

  • формирование адреса следующей команды;
  • декодирование команды;
  • вычисление адресов операндов;
  • выборку операндов;
  • исполнение операции;
  • формирование признака результата;
  • запись результата.

Не все из этапов присутствуют при выполнении любой команды (зависит от типа команды), однако этапы выборки, декодирования, формирования адреса следующей команды и исполнения операции имеют место всегда. В определенных ситуациях возможны еще два этапа:

  • косвенная адресация;
  • реакция на прерывание.

Оперативная память (Рис. 4) устроена следующим образом:

  • прием информации от других устройств;
  • запоминание информации;
  • передача информации по запросу в другие устройства компьютера.

Рис. 4. ОЗУ (Оперативное запоминающее устройство) компьютера ()

В основе архитектуры современных ЭВМ лежит магистрально-модульный принцип (Рис. 5). Модульный принцип позволяет комплектовать нужную конфигурацию и производить необходимую модернизацию. Он опирается на шинный принцип обмена информацией между модулями. Системная шина или магистраль компьютера включает в себя несколько шин различного назначения. Магистраль включает в себя три многоразрядные шины:

  • шину данных;
  • шину адреса;
  • шину управления.

Рис. 5. Магистрально-модульный принцип построения ПК

Шина данных используется для передачи различных данных между устройствами компьютера; шина адреса применяется для адресации пересылаемых данных, то есть для определения их местоположения в памяти или в устройствах ввода/вывода; шина управления включает в себя управляющие сигналы, которые служат для временного согласования работы различных устройств компьютера, для определения направления передачи данных, для определения форматов передаваемых данных и т. д.

Такой принцип справедлив для различных компьютеров, которые можно условно разделить на три группы:

  • стационарные;
  • компактные (ноутбуки, нетбуки и т. д.);
  • карманные (смартфоны и пр.).

В системном блоке стационарного компьютера или в корпусе компактного находятся основные логические узлы - это материнская плата с процессором, блок питания, накопители внешней памяти и т. д.

Список литературы

1. Босова Л.Л. Информатика и ИКТ: Учебник для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Босова Л.Л. Информатика: Рабочая тетрадь для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2010.

3. Астафьева Н.Е., Ракитина Е.А., Информатика в схемах. - М.: БИНОМ. Лаборатория знаний, 2010.

4. Танненбаум Э. Архитектура компьютера. - 5-е изд. - СПб.: Питер, 2007. - 844 с.

1. Интернет портал «Все советы» ()

2. Интернет портал «Электронная энциклопедия “Компьютер”» ()

3. Интернет портал «apparatnoe.narod.ru» ()

Домашнее задание

1. Глава 2, §2.1, 2.2. Босова Л.Л. Информатика и ИКТ: Учебник для 8 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

2. Как расшифровывается аббревиатура ЭВМ?

3. Что подразумевает термин «Архитектура компьютера»?

4. Кем были сформулированы основные принципы, лежащие в основе архитектуры ЭВМ?

5. На чем основывается архитектура современных ЭВМ?

6. Назовите основные функции центрального процессора и оперативной памяти ПК.